Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

A new pseudo-two-dimensional niobium chloride selenide, Nb₃Se₁₀Cl₃

Jung-Eun Kwak, Song-I Hahn and Hoseop Yun*

Division of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 443-749, Republic of Korea

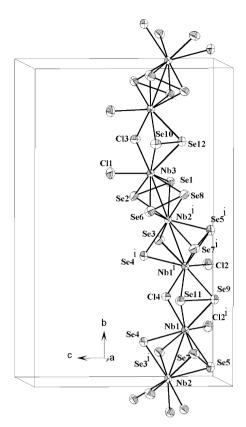
Correspondence e-mail: hsyun@ajou.ac.kr

Kev indicators

Single-crystal X-ray study T = 150 KMean $\sigma(\text{Se-Se}) = 0.002 \text{ Å}$ R factor = 0.055 wR factor = 0.141Data-to-parameter ratio = 24.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Triniobium decaselenide trichloride, $Nb_3Se_{10}Cl_3$, contains waved one-dimensional chains in which the Nb atoms are arranged in a sequence of two consecutive short bonds and one long distance. Two Nb atoms are each coordinated by three Se_2^{2-} , Cl^- and μ^2 - Cl^- , whereas the third Nb atom is surrounded by four Se_2^{2-} to form distorted rectangular antiprisms of Se. Weak interchain interactions between Se and terminal Cl atoms connect the chains along the [101] direction to form a pseudo-two-dimensional layer. $Nb_3Se_{10}Cl_3$ is an insulator, in accordance with the charge-balanced formulation $[Nb^{5+}][Nb^{4+}]_2[Se_2^{2-}]_5[Cl^-]_3$.


Received 28 November 2006 Accepted 26 December 2006

Comment

During the search for new low-dimensional group 5 transition metal chalcogenides, single crystals of Nb₃Se₁₀Cl₃ were obtained. Nb₃Se₁₀Cl₃ is isostructural with low-temperature Nb₃Se₁₀Br₃ (Grenouilleau *et al.*, 1988), which transforms to a high-temperature form, Nb₆Se₂₀Br₆ (Meerschaut *et al.*, 1986). The existence of Nb₆Se₂₀Cl₆ has been mentioned (Grenouilleau *et al.*, 1988), but to our knowledge, no synthetic details or structural information have been reported.

Nb₃Se₁₀Cl₃ contains infinite one-dimensional chains in which the Nb atoms are arranged in a waved distribution with a sequence of two consecutive short bonds [Nb1-Nb2, 3.108 (2) Å; Nb2-Nb3, 3.105 (2) Å) and one long distance (Nb1-Nb1 or Nb3-Nb3, >3.8 Å) (Fig. 1). The short distances are slightly longer than the usual Nb-Nb bonding distances (Do & Yun, 1996; Kim & Yun, 2002; Meerschaut, 2006) but comparable to those found in Nb₄Se₁₆Br₂ (Grenouilleau *et al.*, 1987). Two types of Nb coordination polyhedra are found. Firstly, Se₂²⁻ pairs and μ^2 -Cl⁻ ions bridge pairs of Nb atoms (Nb1-Nb1, Nb3-Nb3). An additional Cl⁻ ion and the rectangular [Se₄] plane are attached to the Nb1 and Nb3 atoms to complete the NbSe₆Cl₂ coordination. The imposed symmetry of the bridging atoms (Se₉, Se₁0,

© 2007 International Union of Crystallography All rights reserved

Figure 1 One Nb₃Se₁₀Cl₃ chain within the unit cell. Displacement ellipsoids are drawn at the 80% probability level. [Symmetry code: (i) x, $\frac{1}{2} - y$, z.]

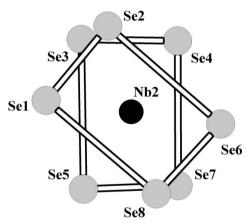


Figure 2
Relative orientation of adjacent [Se₄] units of the NbSe₈ antiprism.

Se11, Se12, Cl3 and Cl4) is *m*. Secondly, the rectangular [Se₄] planes are perpendicular to the Nb1—Nb2 and Nb2—Nb3 bonds, which leads to a distorted rectangular antiprismatic arrangement around Nb2 (Fig. 2). The sharing of the rectangular faces allows for the formation of the short Nb—Nb distances. The dihedral angle of the rectangular [Se₄] planes is 48.6 (1)°, which is significantly smaller than 54° found in Nb₃Se₁₀Br₂ (Meerschaut *et al.*, 1987). Weak interactions between the Se atoms of one chain with the terminal Cl atoms of neighboring chains [Cl1—Se4, 2.968 (1) Å; Cl2—Se1,

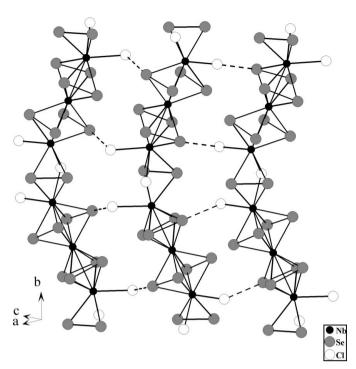


Figure 3
One layer in Nb₃Se₁₀Cl₃ formed by Se···Cl interchain connections.

3.011 (2) Å] connect the chains along the [101] direction to form a pseudo-two-dimensional layer (Fig. 3). The charge-balanced formulation $[Nb^{5+}][Nb^{4+}]_2[Se_2^{2-}]_5[Cl^-]_3$ is consistent with the observed insulating behavior of this compound.

Experimental

 ${
m Nb_3Se_{10}Cl_3}$ was obtained from a reaction of Ag, Nb and Se in an elemental ratio of 1:1:3 in the presence of a eutectic mixture of AgCl/LiCl. The starting materials were placed in a fused-silica tube. The tube was evacuated to 10^{-3} Torr, sealed and heated to 903 K, where it was kept for 72 h. The tube was cooled at a rate of 28 K h $^{-1}$ to 573 K and the furnace was shut off. Air- and water-stable black needle-shaped crystals were isolated after the flux was removed. Qualitative analysis of the crystals with an EDAX-equipped scanning electron microscope indicated the presence of Nb, Se and Cl. No other element was detected.

Crystal data

Nb₃Se₁₀Cl₃ Z = 4 $M_r = 1174.68$ $D_x = 4.844 \text{ Mg m}^{-3}$ Monoclinic, $P2_1/m$ Mo $K\alpha$ radiation $\alpha = 7.207$ (3) Å $\alpha = 150$ (2) K $\alpha = 11.834$ (7) Å Needle, black $\alpha = 95.60$ (2)° $\alpha = 1610.6$ (14) Å³

Data collection

Rigaku R-AXIS Rapid diffractometer ω scans Absorption correction: numerical (NUMABS; Higashi, 2000) $T_{\min} = 0.053, T_{\max} = 0.278$

15892 measured reflections 3799 independent reflections 2794 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.080$ $\theta_{\rm max} = 27.5^{\circ}$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0624P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.055$	+ 20.4571 <i>P</i>]
$wR(F^2) = 0.141$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.07	$(\Delta/\sigma)_{\rm max} < 0.001$
3799 reflections	$\Delta \rho_{\rm max} = 3.51 \text{ e Å}^{-3}$
154 parameters	$\Delta \rho_{\min} = -2.66 \text{ e Å}^{-3}$

Table 1 Selected geometric parameters (Å, °).

Nb1-Cl2 ⁱ	2.497 (3)	Nb3-Cl1	2.492 (4)
Nb1-Cl4	2.549 (3)	Nb3-Cl3	2.563 (3)
Nb1-Se3i	2.5761 (19)	Nb3-Se2	2.5741 (18)
Nb1-Se7	2.5942 (19)	Nb3-Se8	2.589 (2)
Nb1-Se4	2.623 (2)	Nb3-Se1	2.6311 (19)
Nb1-Se5	2.6654 (19)	Nb3-Se6	2.6586 (19)
Nb1-Se11	2.6975 (18)	Nb3-Se12	2.686 (2)
Nb1-Se9	2.7047 (19)	Nb3-Se10	2.7114 (19)
Nb2-Se4	2.6234 (19)	Nb1-Nb2	3.1075 (18)
Nb2-Se1 ⁱ	2.6283 (18)	Nb2-Nb3i	3.1053 (19)
Nb2-Se5	2.639 (2)	Se1-Se2	2.338 (2)
Nb2-Se6i	2.6423 (19)	Se3-Se4i	2.339 (2)
Nb2-Se8i	2.6649 (18)	Se5—Se7	2.308 (2)
Nb2-Se3i	2.6837 (19)	Se6-Se8	2.307 (2)
Nb2-Se2i	2.6861 (19)	Se9-Se11	2.309 (3)
Nb2-Se7	2.6895 (19)	Se10-Se12	2.317 (3)
Nb3i-Nb2-Nb1	179.08 (5)	Nb1i-Cl4-Nb1	96.85 (17)
Nb3 ⁱⁱ -Cl3-Nb3	96.62 (15)		

Symmetry codes: (i) $x, -y + \frac{1}{2}, z$; (ii) $x, -y + \frac{3}{2}, z$.

The highest peak in the final Fourier map is 1.21 $\rm \mathring{A}$ from Cl4 and the deepest hole is 0.76 $\rm \mathring{A}$ from Nb1.

Data collection: *RAPID-AUTO* (Rigaku, 2005); cell refinement: *RAPID-AUTO*; data reduction: *RAPID-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: locally modified version of *ORTEP* (Johnson, 1965); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This research was supported by the Korean Science and Engineering Foundation (R01-2003-000-10667-0). Use was made of the X-ray facilities supported by Ajou University.

References

Do, J. & Yun, H. (1996). Inorg. Chem. 35, 3729–3730.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Grenouilleau, P., Guemas, L. & Meerschaut, A. (1988). Eur. J. Solid State Inorg. Chem. 25, 341–350.

Grenouilleau, P., Meerschaut, A., Guemas, L. & Rouxel, J. (1987). J. Solid State Chem. 66, 293–303.

Higashi, T. (2000). NUMABS. Rigaku Corporation, Tokyo, Japan.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.

Kim, C.-K. & Yun, H.-S. (2002). Acta Cryst. C58, i53-i54.

Meerschaut, A. (2006). Acta Cryst. E62, i131-i132.

Meerschaut, A., Grenouilleau, P., Guemas, L. & Rouxel, J. (1987). J. Solid State Chem. 70, 36–47.

Meerschaut, A., Grenouilleau, P. & Rouxel, J. (1986). J. Solid State Chem. 61, 90–97

Rigaku (2005). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, i27–i29 Kwak et al. • Nb₃Se₁₀Cl₃ i29